NuMI Magnets

or What to look for in a gift magnet's mouth

> David Harding 3 November 2008

Re-using Magnets Pros & Cons

- Cheaper, defined
- Quicker
- Focuses beam design
- Minimizes rad waste
- Known properties
- No surprises

- But not free
- But not instantaneous
- Limits beam design
- Rad exposure
- False assumptions
- Surprises

Metal prices have been volatile

6-3-120 Dipoles

- Not used in final beamline design, but several rehabbed for early design and BNB
- Venerable magnets had been sitting in decommissioned beamlines

6-3-120 Surprises

- Poor coil-to-ground insulation
- Much work
 - Extra time
 - Extra cost

Inside an old 6-3-120 dipole

3 Nov 2008

David Harding DUSEL Beamline Working Group

An old 6-3-120

B2 Dipoles

- Specs changed, clarified in process
 - Tolerances on beam tube length and flange position
- Worked out fine in the end
 - Could have been substantial cost increase

EPB Dipoles

- Extensively used in NuMI and SY120
- Venerable magnets had been sitting in decommissioned beamlines

EPB Dipole comments

- As with B2 dipoles, beam tube length, flange position, squareness issues
- Multiple bus, manifold possibilities
- Magnetic shielding effort successful
- Notoriously fragile insulators
 - Have been problematic
 - Upgrade designed, tested, to be installed

EPB Dipole photos

David Harding DUSEL Beamline Working Group

3Q120 Quadrupoles

- Extensively used in NuMI and BNB
- Venerable magnets had been sitting in decommissioned beamlines

3Q120 Surprises

- Many variants
- Many ground faults and water leaks
- Mostly not repairable
- Water needs
- Power supply needs

3Q120 photos

David Harding DUSEL Beamline Working Group

3Q120 Variants

- Two core sizes
 - Better high field performance? No!
- Solid conductor or hollow \rightarrow
 - 118 turns/pole or 28 turns/pole
- Cooling fins (solid conductor)
 - 8 fins or 12 fins (and variants on manifolding)
 - Copper or aluminum
- Cooling paths (hollow conductor)
 - 8 paths or 16 paths
- Beam tube
 - Round or star

3Q120 Failures

- Some magnets rejected before attempting rework
 - Ground faults
- About ¼ of magnets selected for rework failed
 - Mostly water leaks
- Generally not repairable
- Competing with other projects for good ones

3Q120 Cooling

- Confusion regarding
 - Current needs for working gradients
 - Power for DC operation
 - Water needs for adequate cooling
 - Actual water flow
- Ramp the magnets or add cooling?
 - Added external cooling jackets for hottest magnets
 - Will eventually replace with hollow conductor
- All worked out in the end with some anquish

Trim Dipoles

- Commitment to MI style trims
- Requirements changed with beam design
- Had to add external cooling

Magnet with spacers, coolers

Closeout magnet reports

- <u>http://tdserver1.fnal.gov/project/JobFiles/Current_Jobs/0201_BDP/Closeout/0201-BDP_summary.doc</u>
- <u>http://tdserver1.fnal.gov/project/JobFiles/Current_Jobs/0191_QQM/Closeout/0191-QQM_summary.doc</u>
- <u>http://tdserver1.fnal.gov/Project/JobFiles/Current_Jobs/0188_IDH/closeout/0188-IDHx_summary.doc</u>

Lessons Learned

- Re-used magnets can be good
- Look that gift horse in the mouth
- Ask the experts rather than relying on 20+ year old notes
- System integration is critical

 Optics, magnets, power, water, operations
- Changing course in mid-stream adds cost
- Close communication is essential