

Mary Bishai Brookhaven National Lab

Recap

Maximizing sensitivity to CPV

Sensitivity to ν_e appearance for $\sin^2 2\theta_{13} < 0$

Physics with

Summary and

FNAL-Homestake Beam Design and Physics Flexibility

DUSEL Beamline Working Group Mtg, 1/5/09

Mary Bishai Brookhaven National Lab

January 5, 2009

Outline

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recap

Maximizing sensitivity to CPV

Sensitivity to ν_e appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $\nu_{II} \rightarrow \nu_{II} = \tau$

Summary and conclusions

1 Recap

2 Maximizing sensitivity to CPV

3 Sensitivity to ν_e appearance for $\sin^2 2\theta_{13} < 0.005$

4 Physics with $\nu_{\mu} \rightarrow \nu_{\mu,\tau}$

5 Summary and conclusions

Requirements of the FNAL/Homestake Beam

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaven National Lal

Recap

Maximizing sensitivity to CPV

Sensitivity to u_e appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $u_{\mu} \rightarrow \nu_{\mu,\tau}$

Summary and

The design specifications of a new WBLE beam based at the Fermilab MI are driven by the physics of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

Requirements:

- -Maximal possible neutrino fluxes to encompass the 1st and 2nd oscillation nodes, with maxima at 2.4 and 0.8 GeV.
- -High purity ν_{μ} beam with negligible ν_{e}

 $L=1300\ km$

-Minimize the neutral-current feed-down contamination at lower energy, therefore minimizing the flux of neutrinos with energies greater than 5 GeV where there is no sensitivity to the oscillation parameters is highly desirable.

Mary Bishai Brookhaven

Dacan

Maximizing sensitivity to CPV

Sensitivity to ν_e appearance for $\sin^2 2\theta_{13} <$

Physics with $\nu_{\mu} \rightarrow \nu_{\mu,\tau}$

Summary and

Maximizing sensitivity to CPV

Maximizing sensitivity to **CPV**

Latest measurement from MINOS: $\Delta m_{32}^2 = 2.43 \pm 0.13 \times 10^{-3} \text{ eV}^2$

Maximizing sensitivity to **CPV**

Latest measurement from MINOS: $\Delta m_{32}^2 = 2.43 \pm 0.13 \times 10^{-3} \text{ eV}^2$

Mary Bisha Brookhave National La

Reca

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2 heta_{13} < 1$

Physics with

Summary and conclusions

For water Cerenkov 2 possible beam design strategies to optimize CPV sensitivity

- Strategy 1: Increase low energy flux and 2nd oscillation maximum through improved focusing. this talk.
- Strategy 2: Improve S:B at low energies by reducing high energy tail using beam plugs.

Optimization of target/focusing system design for CPV

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaver

Recap

Maximizing sensitivity to CPV

Sensitivity to u_e appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $\nu_{\mu} \rightarrow \nu_{\mu,\tau}$

Summary and conclusions

Strategy 1: Optimize focusing to maximize ν_{μ} flux at 2nd oscillation maximum using NuMI-like horns

Insert CC target (r=6mm,L=80cm, ρ = 2.1 g/cm³) into NuMI Horn1, increase current to 250kA:

Optimizing DUSEL spectra with NuMI horns

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaver National La

Recap

Maximizing sensitivity to CPV

Sensitivity to $\nu_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $\nu_{\mu} \rightarrow \nu_{\mu,\tau}$

Summary and conclusions

1-Decrease separation between Horn1 and Horn2 (fully embedded target)

DUSEL event rates with different horn/target configs

Moving the horns closer increases the low energy flux

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recar

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2 heta_{13} <$

Physics with

Summary and conclusions

2- Target position in Horn 1. H1-H2 = 6m

NuMI, 120 GeV, 250 kA, Z=380m, R=2m, CC Rate, H1-H2=6m, tgtz = 0

Target fully embedded in horn

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recap

Maximizing sensitivity to CPV

Physics with $\nu_{\mu} \rightarrow \nu_{\mu}$

Summary and conclusions

2- Target position in Horn 1. H1-H2 = 6m

NuMI, 120 GeV, 250 kA, Z=380m, R=2m, CC Rate, H1-H2=6m, tgtz = -20

Target pulled out 20cm from Horn 1 face

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recar

Maximizing sensitivity to CPV

Sensitivity to $\nu_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $\nu_{\mu} \rightarrow \nu_{\mu}$

Summary and

2- Target position in Horn 1. H1-H2 = 6m

NuMI, 120 GeV, 250 kA, Z=380m, R=2m, CC Rate, H1-H2=6m, tgtz = -40

Target pulled out 40cm from Horn 1 face

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recap

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0$

Physics with $\nu_{\cdot \cdot \cdot} \rightarrow \nu_{\cdot \cdot \cdot} = 0$

Summary and

2- Target position in Horn 1. H1-H2 = 6m

NuMI, 120 GeV, 250 kA, Z=380m, R=2m, CC Rate, H1-H2=6m, tgtz = -60

Target pulled out 60cm from Horn 1 face

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recar

Maximizing sensitivity to CPV

Physics with $\nu_{II} \rightarrow \nu_{II}$

Summary and conclusions

2- Target position in Horn 1. H1-H2 = 6m

NuMI, 120 GeV, 250 kA, Z=380m, R=2m, CC Rate, H1-H2=6m, tgtz = -80

Target pulled out 80cm from Horn 1 face

Current focusing efficiencies

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaver National La

Reca

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} <$

Physics with $\nu_{\mu} \rightarrow \nu_{\mu,\tau}$

Summary and conclusions

Simulated "perfect" focusing by setting hadron $p_t=0, p_z=p_{tot}$ at production point from target surface and using GEANT to propagate hadrons through the beamline.

With an 80cm target fully embedded in NuMI horn1, ν_{μ} rates at 1300km with realistic/perfect focusing are:

Can we improve the low energy focusing efficiency?

Mary Bishai Brookhaven

Recan

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with

Summary and

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

FNAL-Homestake Beam Design and Physics Flexibility

Sensitivity to u_{e} appearance $\frac{\text{for sin}^2}{\sin^2 2\theta_{13}} <$

0.005

Normal hierarchy, $\Delta m_{32}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\Delta m_{12}^2 = 8.6 \times 10^{-5} \text{ eV}^2$, NuMI off-axis at 810 km WBLE 60 GeV at 1300km

LE, numu CC, sin2theta13=0.0, 810km/12km

events (evt/GeV/(MW.1E7s)/kTon) 0 0 0 0 0 0 0 0 0.04 Ö10 0.02 nmnu -0.5 0.5 1.5 log(Energy/GeV)

 $P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 0.9 \times 10^{-3}$

wble060, numu CC, sin2theta13=0.0, 1300km/0km

$$P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 1.1 \times 10^{-3}$$

$$\sin^2(2 heta_{13})=0.000$$
 , as to the property of the second constant $\sin^2(2 heta_{13})=0.000$

FNAL-Homestake Beam Design and Physics Flexibility

Sensitivity to u_{e} appearance $\frac{\text{for sin}^2}{\sin^2 2\theta_{13}} <$

0.005

LE, numu CC, sin2theta13=0.001, 810km/12km

$$P(\nu_{\mu}\rightarrow\nu_{e},\,\delta_{cp}=0)=1.3\times10^{-3}$$

wble060, numu CC, sin2theta13=0.001, 1300km/0km cp=270 deg cp=180 deg cp=90 deg 0.08 0.06 0.04 ပ္ပ 0.02 nunu

$$P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 1.6 \times 10^{-3}$$

0.5

-0.5

$$\sin^2(2\theta_{13}) = 0.001$$

log(Energy/GeV)

FNAL-Homestake Beam Design and Physics Flexibility

Sensitivity to u_{e} appearance $\frac{\text{for sin}^2}{\sin^2 2\theta_{13}} <$ 0.005

Normal hierarchy, $\Delta m_{32}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\Delta m_{12}^2 = 8.6 \times 10^{-5} \text{ eV}^2$, NuMI off-axis at 810 km WBLE 60 GeV at 1300km

LE, numu CC, sin2theta13=0.005, 810km/12km wble060, numu CC, sin2theta13=0.005, 1300km/0km

 $P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 3.2 \times 10^{-3}$

FNAL-Homestake Beam Design and Physics Flexibility

Sensitivity to u_{e} appearance $\frac{\text{for sin}^2}{\sin^2 2\theta_{13}} <$ 0.005

Ö10

nmnu

-0.5

Normal hierarchy, $\Delta m_{32}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\Delta m_{12}^2 = 8.6 \times 10^{-5} \text{ eV}^2$, NuMI off-axis at 810 km WBLE 60 GeV at 1300km

LE, numu CC, sin2theta13=0.02, 810km/12km

events (evt/GeV/(MW.1E7s)/kTon) 0.04

 $P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 8.9 \times 10^{-3}$

0.5

wble060, numu CC, sin2theta13=0.02, 1300km/0km

$$P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 9.1 \times 10^{-3}$$

$$\sin^2(2 heta_{13})=0.02$$
 , and the second \mathbb{R}

0.02

1.5 log(Energy/GeV)

FNAL-Homestake Beam Design and Physics Flexibility

0.005

Sensitivity to u_{e} appearance $\frac{\text{for sin}^2}{\sin^2 2\theta_{13}} <$

Normal hierarchy, $\Delta m_{32}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\Delta m_{12}^2 = 8.6 \times 10^{-5} \text{ eV}^2$, NuMI off-axis at 810 km WBLE 60 GeV at 1300km

LE, numu CC, sin2theta13=0.04, 810km/12km

events (evt/GeV/(MW.1E7s)/kTon) 0.04 Ö10 0.02 nmnu 0.5 -0.5 1.5 log(Energy/GeV)

$$P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 1.7 \times 10^{-2}$$

wble060, numu CC, sin2theta13=0.04, 1300km/0km CC events (evt/GeV/(MW.1E7s)/kTon)
2 0 5 5 cp=270 deg cp=180 deg cp=90 deg 0.08 0.06 0.04 0.02

$$P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 1.7 \times 10^{-2}$$

0.5

-0.5

$$\sin^2(2 heta_{13})=0.04$$

log(Energy/GeV)

FNAL-Homestake Beam Design and Physics Flexibility

Sensitivity to u_{e} appearance $\frac{\text{for sin}^2}{\sin^2 2\theta_{13}} <$

0.005

LE, numu CC, sin2theta13=0.1, 810km/12km

0.04 Ö10 0.02 numu 0.5 -0.5 1.5 log(Energy/GeV)

wble060, numu CC, sin2theta13=0.1, 1300km/0km

$$P(\nu_{\mu} \to \nu_{e}, \delta_{cp} = 0) = 4.0 \times 10^{-2}$$

$$P(\nu_{\mu} \rightarrow \nu_{e}, \delta_{cp} = 0) = 3.9 \times 10^{-2}$$

Raw event rates

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bishai Brookhaven National Lal

Reca

Maximizing sensitivity to CPV

Sensitivity to $\nu_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $u_{\mu}
ightarrow
u_{\mu, au}$

Summary and conclusions

 ν_{μ} rates at 1300km: AGS 120 GeV 9mrad off-axis: 18,000 unoscillated ν_{μ} CC/100 kT/MW.yr (10 21) POT 7,600 oscillated ν_{μ} CC

Oscillated appearance rates at 1300km:

			ν_{μ} –	$\rightarrow \nu_{ m e}$ rate			$\bar{\nu}_{\mu}$ –	$ ightarrow$ $ar{ u}_{ m e}$ rates	S
(sign of Δm_{31}^2)	$\sin^2 2\theta_{13}$	δ_{CP} deg.							
		0°	-90°	180°	+90°	0°	-90°	180°	+90°
21.									

WBLE beams at 1300km, per 100kT/MW. yr (10 ²¹) POT									
AGS 120 GeV, 9 mRad off-axis		Beam $\nu_e = 94^{**}$				Beam $\bar{\nu}_{\rm e} = 34^{**}$			
(+/-)	0.0	28	N/A	N/A	N/A	10	N/A	N/A	N/A
(+)	0.005	62	110	70	24	18	6	14	26
(-)	0.005	38	70	50	18	28	8	22	42
(+)	0.02	174	268	190	96	40	14	30	54
(-)	0.02	78	144	102	38	76	38	66	104

$$\Delta m_{21,31}^2 = 8.6 \times 10^{-5}, 2.5 \times 10^{-3} \text{ eV}^2, \sin^2 2\theta_{12,23} = 0.86, 1.0$$

 $1\text{yr} = 2 \times 10^7 \text{s} \Rightarrow 1 \text{ MW. yr} = 10^{21} \text{ POT at } 120 \text{ GeV}$

Mary Bishai Brookhaven

Recan

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2 heta_{13} <$

Physics with $u_{\mu}
ightarrow
u_{\mu, au}$

Summary and

Physics with $u_{\mu} ightarrow u_{\mu, au}$

Precision measurements of $u_{ au}$ appearance

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhave National La

Recap

Maximizing sensitivity to CPV

Sensitivity to $\nu_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $u_{\mu}
ightarrow
u_{\mu, au}$

Summary and conclusions

Using wide-band AGS 120 GeV on-axis beam:

wble120 disappearance 1300km / 0km

 ν_{μ} rates: 4000 unosc CC/10kT/MW.yr (10 21 POT), 2000 osc CC/10kT/MW.yr

Assuming lepton universality $\sigma^{\rm CC}(\nu_{\tau})/\sigma^{\rm CC}(\nu_{\mu,\rm e})=1.0$:

We expect 1280 $u_{ au}$ CC/10kT/MW.yr \geq 3.2 GeV

- For a smaller LAr detector we can see 100's of ν_{τ} appear (compared to 3-4 events in DONUT and \sim 10? in OPERA)
- For water Cerenkov ν_{τ} QE interactions followed by $\tau \to \mu$, e will produce an excess of single lepton events at multi GeV energies.

Measuring Δm_{32}^2 and $\Delta \bar{m}_{32}^2$

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaver National La

Reca

Maximizing sensitivity to CPV

Sensitivity to $\nu_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $u_{\mu}
ightarrow
u_{\mu, au}$

Summary and conclusions

Separation of QE ν_{μ} , $\bar{\nu}_{\mu}$ interactions is possible in a non-magnetized detector - using μ lifetime and $\cos\theta_{\mu}$, angle of the outgoing muon w.r.t beam (MiniBoone Nucl. Phys. Proc. Suppl. 159, 79(2006)).

DUSEL LB experiments = the best measurement of Δm_{32}^2 and $\Delta \bar{m}_{32}^2$ $\nu_{\mu}, \bar{\nu}_{\mu}$ disappearance provide precision tests of CPT, sterile neutrino models, Lorentz violation...etc.

Mary Bishai Brookhaven

Recan

Maximizing sensitivity to

Sensitivity to $u_{
m e}$ appearance for $\sin^2 2 heta_{13} <$

Physics with

Summary and conclusions

Summary and conclusions

Physics Sensitivities

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaven National Lal

Reca

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} <$

Physics with $\nu_{\mu} \rightarrow \nu_{\mu}$

Summary and conclusions

Physics sensitivity with WCe, 3σ for all $\delta_{\rm cp}$ $\overline{(\theta_{13},\ {\rm hier})/50\%}$ $\delta_{\rm cp}$ $\overline{({\it CPV})}$

Beam	Det size	Exposure	bkgd	$\sin^2 2\theta_{13}$	$sign(\Delta m_{31}^2)$	CPV
	(FIDUCIAL)	$\nu + \bar{\nu}$	uncert		5.	
NuMI/HStake	100kT	700kW 2.6+2.6yrs	5%	0.018	0.044	> 0.1
120 GeV	100kT	1MW 3+3yrs	5%	0.014	0.031	> 0.1
9mrad off-axis	300kT	1MW 3+3yrs	5%	0.008	0.017	0.025
	300kT	1MW 3+3yrs	10%	0.009	0.018	0.036
	300kT	2MW 3+3yrs	5%	0.005	0.012	0.012
	300kT	2MW 3+3yrs	10%	0.006	0.013	0.015

NB: Flux at 1st oscillation maximum has increased by 25% since these calculations

Summary

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaver National La

Reca

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} < 0.005$

Physics with $u_{\mu}
ightarrow
u_{\mu, au}$

Summary and conclusions

- To improve CPV violation at lower Δm_{31}^2 we need to increase flux at lower energies.
- Using an embedded target in the NuMI horns running with 250kA, we can achieve 80% focusing efficiency at the 1st oscillation maxima and 40% focusing efficiency at the 2nd oscillation maxima. We can still gain with a 120 GeV on-axis beam by improving low energy focusing efficiency.
- If we can measure the intrinsic $\nu_{\rm e}$ background to 1-2%, then using a large detector with excellant S:B, we can observe $\nu_{\rm e}$ appearance even if $\theta_{13}=0$.
- High precision measurements of ν_{μ} , $\bar{\nu}_{\mu}$ disappearnce test universality, CPT, Lorentz violation, sterile neutrino models, light gauge boson models.
- \blacksquare Large appearance signal of ν_{τ} above the τ production threshold.

Plans

FNAL-Homestake Beam Design and Physics Flexibility

Mary Bisha Brookhaver National La

Reca

Maximizing sensitivity to CPV

Sensitivity to $u_{\rm e}$ appearance for $\sin^2 2\theta_{13} <$

Physics with $u_{\mu}
ightarrow
u_{\mu, au}$

Summary and conclusions

- Improving CPV sensitivity:
 - Explore some more horn design options to improve focusing efficiency at low energies - make horn bigger?.
 - Pursue Strategy 2 improving S:B at the 2nd oscillation maxima - studies using beam plugs to cut high energy tails.
 - Adjustable off-axis targeting systems?
- \blacksquare Explore improving ν_{τ} physics sensitivity using an adjustable focusing system.
- **Explore** requirements for determining the θ_{23} quadrant.